🧠 What Should LLM-Facing Developers Know?

If building for the internet was the mainstream in the past 20 years, building for LLMs might be the future.

Just like how web developers don't need to know the low-level implementation of TCP/IP but understand request/response and protocols like HTTPS, developers building on top of LLMs in the future might not need to know model internals—but they should know how to interact with LLMs effectively.

📦 As an LLM Developer, Here's What You Should Know

1. Interaction Patterns: Prompt → Completion / Chat

  • Understand how LLMs receive input and return output (prompts and responses)
  • Learn how to call common LLM APIs (OpenAI, Claude, Mistral, local models)
  • Know about token limits, context windows—similar to request size limits
  • Prompt Engineering = crafting good requests (like HTTP headers + body)
  • Learn function calling and tool use—just like defining APIs for the model to call

2. Conversation State & Memory

Similar to Sessions/Cookies in web:

  • Manage conversation history
  • Use embeddings for memory or long-term context
  • Handle short-term vs long-term memory tradeoffs

3. Security, Cost, and Performance

  • Be aware of Prompt Injection, the new "SQL injection"
  • Control token usage to manage costs
  • Stream outputs, cache results, and reuse context to optimize performance

4. LLM Capabilities and Limitations

Know what LLMs are good at:

  • Text generation, summarization, question answering, parsing

And what they're not good at:

  • Accurate calculations, strict logic, complex planning

LLMs are not databases, rule engines, or reasoning machines—they are probabilistic language models.

5. RAG and Agent Architectures

  • Understand RAG (Retrieval-Augmented Generation):
    • Chunking, embedding, vector search
  • Learn the basics of agent-style systems:
    • Multi-step reasoning, tool use, task planning
    • Frameworks: LangChain, AutoGPT, ReAct

6. Structured Output and Parsing

  • Prompt models to output in JSON/YAML/Markdown
  • Use parsers or schema validators (zod, pydantic) to handle output safely

🧩 Advanced (Optional) Knowledge

  • Basic understanding of how models work (Transformers, attention mechanisms)
  • Learn how embeddings work and how to compute similarity (cosine, dot product)
  • Study prompt patterns: Chain-of-Thought, Few-shot, ReAct
  • Know key open-source models (LLaMA, Mistral, GPT series) and how to choose between them
  • Try deploying local models (Ollama, LM Studio, llama.cpp) for testing and dev

互联网开发者 vs LLM开发者:类比与知识体系

互联网开发者并不需要掌握网络协议的全部实现细节,但需要理解它的基本工作方式、模式和限制;同理,未来如果LLM成为基础设施级别的技术,开发者也许需要掌握"面向LLM开发"的基本理念和接口,而不必掌握模型的底层实现。

🧠 面向 LLM 的开发者需要了解的知识

1. LLM 的「协议」与「调用模式」

  • 理解 LLM 的输入输出模式(Prompt → Completion / Chat)
  • 熟悉常用的 API 调用方式(如 OpenAI, Claude, Mistral, local 模型等)
  • 了解上下文窗口大小、token 概念,类似于请求包大小的限制
  • 掌握构建提示语的技巧(Prompt Engineering),就像构造 HTTP 请求头和 Body
  • 理解函数调用 / Tool calling / 插件机制,相当于为 LLM 定义"API接口"

2. 对话状态与记忆管理

类似 Session/Cookie 的机制,LLM 中也需要维护上下文,使用:

  • Conversation history
  • Embedding-based memory
  • 长期记忆 vs 短期记忆 的划分与使用策略

3. 安全、性能与成本

  • 理解 prompt injection(相当于 SQL 注入)
  • 限制 token 使用,控制成本
  • 使用流式输出、缓存重复调用等手段优化性能

4. LLM 的能力边界与行为模型

  • 哪些任务适合 LLM(生成、摘要、对话、理解、结构化输出等)
  • 哪些任务不适合(精确计算、严格逻辑推理、多步复杂规划)
  • LLM 并不是数据库、规则引擎、图形引擎——了解它是一个概率语言模型

5. RAG 与 Agent 架构

  • 理解 RAG(Retrieval-Augmented Generation):
    • 如何结合知识库、embedding、搜索
    • chunking、向量搜索的策略
  • 初步了解 Agent 架构:
    • 多轮决策、工具使用、规划与执行
    • LangChain, AutoGPT, ReAct 等 agent 框架的基本思想

6. 结构化输出与解析

  • 使用格式化提示输出 JSON/YAML/Markdown 等
  • 搭配 parser、schema 校验器(如 zod, pydantic)进行结构化理解

🧩 进阶开发者可以了解的部分

  • 简要了解模型结构(transformer 机制、注意力机制、finetune vs pretrain)
  • 理解 embedding 的意义和相似度度量(cosine, dot product)
  • 基础的 prompt 设计模式(如 Chain-of-Thought, Few-shot, ReAct)
  • 熟悉常用开放模型(LLaMA, Mistral, Claude, GPT 系列)的优劣和选型建议
  • 部署本地模型(如 Ollama, LM Studio, llama.cpp)用于开发和测试1

haochen xu